
adjustment of 0.511 MeV per electron must be made. Also note that atomic masses may not be given in a problem; they can
be found in tables.

4. For problems involving activity, the relationship of activity to half-life, and the number of nuclei given in the equation
can be very useful. Owing to the fact that number of nuclei is involved, you will also need to be familiar with

moles and Avogadro’s number.
5. Perform the desired calculation; keep careful track of plus and minus signs as well as powers of 10.
6. Check the answer to see if it is reasonable: Does it make sense? Compare your results with worked examples and other

information in the text. (Heeding the advice in Step 5 will also help you to be certain of your result.) You must understand
the problem conceptually to be able to determine whether the numerical result is reasonable.

PHET EXPLORATIONS

Nuclear Fission
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor!

Click to view content (https://phet.colorado.edu/sims/nuclear-physics/nuclear-fission-600.png)

Figure 31.28

Nuclear Fission (https://phet.colorado.edu/en/simulation/legacy/nuclear-fission)

31.7 Tunneling
Protons and neutrons are bound inside nuclei, that means energy must be supplied to break them away. The situation is
analogous to a marble in a bowl that can roll around but lacks the energy to get over the rim. It is bound inside the bowl (see
Figure 31.29). If the marble could get over the rim, it would gain kinetic energy by rolling down outside. However classically, if
the marble does not have enough kinetic energy to get over the rim, it remains forever trapped in its well.

Figure 31.29 The marble in this semicircular bowl at the top of a volcano has enough kinetic energy to get to the altitude of the dashed line,

but not enough to get over the rim, so that it is trapped forever. If it could find a tunnel through the barrier, it would escape, roll downhill,

and gain kinetic energy.

In a nucleus, the attractive nuclear potential is analogous to the bowl at the top of a volcano (where the “volcano” refers only to
the shape). Protons and neutrons have kinetic energy, but it is about 8 MeV less than that needed to get out (see Figure 31.30).
That is, they are bound by an average of 8 MeV per nucleon. The slope of the hill outside the bowl is analogous to the repulsive
Coulomb potential for a nucleus, such as for an particle outside a positive nucleus. In decay, two protons and two neutrons
spontaneously break away as a unit. Yet the protons and neutrons do not have enough kinetic energy to get over the rim. So
how does the particle get out?
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Figure 31.30 Nucleons within an atomic nucleus are bound or trapped by the attractive nuclear force, as shown in this simplified potential

energy curve. An particle outside the range of the nuclear force feels the repulsive Coulomb force. The particle inside the nucleus does

not have enough kinetic energy to get over the rim, yet it does manage to get out by quantum mechanical tunneling.

The answer was supplied in 1928 by the Russian physicist George Gamow (1904–1968). The particle tunnels through a region of
space it is forbidden to be in, and it comes out of the side of the nucleus. Like an electron making a transition between orbits
around an atom, it travels from one point to another without ever having been in between. Figure 31.31 indicates how this works.
The wave function of a quantum mechanical particle varies smoothly, going from within an atomic nucleus (on one side of a
potential energy barrier) to outside the nucleus (on the other side of the potential energy barrier). Inside the barrier, the wave
function does not become zero but decreases exponentially, and we do not observe the particle inside the barrier. The probability
of finding a particle is related to the square of its wave function, and so there is a small probability of finding the particle outside
the barrier, which implies that the particle can tunnel through the barrier. This process is called barrier penetration or quantum
mechanical tunneling. This concept was developed in theory by J. Robert Oppenheimer (who led the development of the first
nuclear bombs during World War II) and was used by Gamow and others to describe decay.

Figure 31.31 The wave function representing a quantum mechanical particle must vary smoothly, going from within the nucleus (to the left

of the barrier) to outside the nucleus (to the right of the barrier). Inside the barrier, the wave function does not abruptly become zero;

rather, it decreases exponentially. Outside the barrier, the wave function is small but finite, and there it smoothly becomes sinusoidal.

Owing to the fact that there is a small probability of finding the particle outside the barrier, the particle can tunnel through the barrier.

Good ideas explain more than one thing. In addition to qualitatively explaining how the four nucleons in an particle can get
out of the nucleus, the detailed theory also explains quantitatively the half-life of various nuclei that undergo decay. This
description is what Gamow and others devised, and it works for decay half-lives that vary by 17 orders of magnitude.
Experiments have shown that the more energetic the decay of a particular nuclide is, the shorter is its half-life. Tunneling
explains this in the following manner: For the decay to be more energetic, the nucleons must have more energy in the nucleus
and should be able to ascend a little closer to the rim. The barrier is therefore not as thick for more energetic decay, and the
exponential decrease of the wave function inside the barrier is not as great. Thus the probability of finding the particle outside
the barrier is greater, and the half-life is shorter.

Tunneling as an effect also occurs in quantum mechanical systems other than nuclei. Electrons trapped in solids can tunnel
from one object to another if the barrier between the objects is thin enough. The process is the same in principle as described for

decay. It is far more likely for a thin barrier than a thick one. Scanning tunneling electron microscopes function on this
principle. The current of electrons that travels between a probe and a sample tunnels through a barrier and is very sensitive to its
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thickness, allowing detection of individual atoms as shown in Figure 31.32.

Figure 31.32 (a) A scanning tunneling electron microscope can detect extremely small variations in dimensions, such as individual atoms.

Electrons tunnel quantum mechanically between the probe and the sample. The probability of tunneling is extremely sensitive to barrier

thickness, so that the electron current is a sensitive indicator of surface features. (b) Head and mouthparts of Coleoptera Chrysomelidea as

seen through an electron microscope (credit: Louisa Howard, Dartmouth College)

Quantum Tunneling and Wave Packets
Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these
particles. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/quantum-tunneling)
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